
Protecting what you value.

Protect what you value.

Rootkits Part 2:
A Technical Primer
by Aditya Kapoor and Ahmed Sallam

�

www.mcafee.com

�

In this white paper, we examine the
technologies that make stealth
possible on the Microsoft® Windows
platform. After a brief explanation
of the basic security architecture of
Windows, we explore the many
methods that have been discovered
for hiding files, processes, and registry
keys. We begin with user-mode
rootkits, which operate at the same
privilege level as the user who
installed it. Most of the common
stealth technologies to date fall into
this category. Rootkits that operate
at the higher, system privilege level,
on the other hand, are not nearly as
common, but they are quite difficult
to remove because their processes
have system privileges. At the end
of this paper, we describe this latest
trend in stealth technologies.

Windows Architecture

The i386 architecture supports four
rings (numbered 0 to 3), or privilege
levels, to protect system code and
data from being unintentionally or
maliciously overwritten by lower
privileged code. Ring 0 is the highest
privilege level, while ring 3 is the
lowest. Windows uses two privilege
levels (rings 0 and 3) for process and
data security. Using only two privilege
levels enables Windows to run on
CPU architectures that do not support
all four.

Code for applications such as Internet
Explorer and Microsoft Word execute
within ring 3. A number of Windows
services run at this level. These include
Service Control Manager, Local System
Security Authority, Winlogon, Session
Manager, and RPC Server. Kernel-level
code runs within ring 0 and is used
in device drivers and Windows kernel
system components such as managers
for virtual memory, cache, I/O, object,
plug and play, as well as the hardware
abstraction layer, graphics subsystem,
file systems, and network protocol
implementations. Other examples of
legitimate code running with system
privileges are device drivers that
control sound, keyboard, printer,
other peripherals, and various system
monitoring and anti-virus tools.

Figure 1 (next page) shows a high-
level view of a simple user-mode
application’s execution path. User
applications constantly require
underlying operating-system kernel
and hardware resources, with these
interactions managed by the operat-
ing system. To communicate with the
kernel, user-mode applications use
Win32 API calls, which are exported
by the set of dynamic link libraries
(DLLs) that comprise the Win32
subsystem; among them are
advapi32.dll, user32.dll, gdi32.dll,
kernel32.dll, shell32.dll, comctl32.dll,
and comdlg32.dll.

Rootkits Part 2: A Technical Primer
In “Rootkits Part 1: The Growing Threat,” we highlighted an important emerging trend in

information security: the increasing pervasiveness of stealth technologies—called rootkits—in
malware. Rootkits shield the files, processes, and registry keys of malware so that they can
carry on their malicious activities without a user’s knowledge. And when a user does discover
a rootkit infection, removing it is often too difficult for the typical user.

Rootkits Part 2: A Technical Primer

�

www.mcafee.com

�

When a function call is made to the
Win32 subsystem, it may, in turn,
carry out one of the following
four activities:

•	 Deal with the request locally, inside
the user-mode space and not call
into the kernel.

•	 Call into a user-mode service such
as csrss.exe, which is responsible
for keeping the Win32 subsystem
running. This process maintains
the Win32 processes state-related
information and returns informa-
tion to the calling APIs.

•	 Issue a remote procedure call to
one of the running Windows
services that acts as the server
for that specific RPC interface.

•	 Make an API call that requires the
services of the kernel. This category
of API call actually calls into the cor-
responding function in the ntdll.dll.

Ntdll is a special-purpose DLL that
contains internal support functions
and system-service dispatch stubs to
executive functions. Ntdll.dll maps the
incoming API requests to their cor-
responding kernel services through a
mechanism called system service
dispatching. The control from user
mode to kernel mode is transferred

via a special processor facility that
could be either an interrupt (INT 02E
for Windows 2000 and older Windows
NT systems) or the SysEnter/SysExit
instructions (for Windows XP and
Windows Vista).1

The kernel32.dll is commonly mistaken
as the Windows kernel. Kernel32.dll is
actually a user-mode DLL that simply
passes on requests for the kernel to
ntdll.dll, another DLL that operates
in user mode. Windows kernel
functions actually reside in ntoskrnl.
exe. The file win32k.sys is another
kernel-mode component that exists
within the Win32 subsystem. Other
subsystems, such as OS/2 and POSIX,
are included only to provide backward
compatibility.

A rootkit must alter the flow of this
normal execution path to make its
stealth implementation successful. This
modification can occur via a process
called system hooking. The Windows
architecture itself supports many
easily implemented hooking methods
to keep itself flexible and extendible.
Rootkits normally modify the data
returned by Windows system function
calls to hide their binary files,
processes, and registry entries.

A Simple User-Mode Application’s Execution Path
 User Mode

User Application/Services

Other Subsystems,
OS/2, POSIX Advapi32.dll Kernel32.dll User32/GDI23 Login/GINA

Ntdll.dll Runtime Library

 Kernel Mode

Ntoskrnl.exe
Executive

Underlying Kernel

Hardware Abstraction Layer

HardwareFigure 1. Windows user- and kernel-mode
interaction for Win32 systems

Rootkits Part 2: A Technical Primer

�

www.mcafee.com

Depending on where they run and
what area in the system they hook,
rootkits’ stealth technology comes
in two flavors: user mode and kernel
mode. User-mode rootkits are
relatively easy to detect and repair
because they execute with user-mode
privileges. Kernel-mode rootkits, on
the other hand, execute with system
privileges, making them more
challenging to detect and repair.

User-Mode Rootkits

Simple user-mode rootkits (for
example, Qoolaid2) can hide from
process viewers, such as the Windows
Task Manager, by hooking the specific
viewer process. However, its effective-
ness depends on its ability to hide
from virus scanners and other security
tools. The stealthier Adclicker-BA3
Trojan hooks all running processes for
this purpose. This tactic, however, may
not always work.

Installation vectors
To alter the execution path of
commonly used APIs, user-mode
rootkits may execute within another
process by loading a DLL into the
memory space of the target. However,
the rootkit need not run inside the
memory of the hooked process. An

alternative method of hooking is for
the malware author to write arbitrary
code using the WriteProcessMemory
function of the Windows API. Figure 2
shows the most commonly used
code-injection attack vectors.

The following section briefly describes
the variety of vectors through which
attacking code can inject itself. All of
these techniques rely on documented
Windows APIs that are commonly
used by utilities, development tools,
debuggers, security tools, and others.
Therefore, merely detecting the use
of these techniques is not sufficient
evidence of rootkit activity.

Injection by application extensions
The Windows operating system,
Windows Explorer, and Internet
Explorer are designed to be program-
matically extensible. Here are some
examples:

•	 Windows NT, 2000, and XP support
the use of the registry key
HKEY_LOCAL_MACHINE\Software\
Microsoft\WindowsNT\Current
Version\Windows\AppInit_DLLs. If
the value of AppInit_DLLs points
to a rootkit DLL, then during the
process load time AppInit_DLLs
causes every process that loads

Common Methods for Malware Attacks
Process

User Code

Kernel32.dll

Rootkit code

1. AppInit_DLLs

2. SetWindowsHookEx

3. CreateRemoteThread

4. WriteProcessMemory

Attacking Malware

Figure 2: Code-injection attack vectors

Rootkits Part 2: A Technical Primer

�

www.mcafee.com

user32.dll to also load the rootkit
DLL listed under this same reg-
istry. That rootkit DLL will then
have access to the process address
space and can apply different
methods of hooking to the process
code and data sections. Malware
attacks Urbin4 and Adware-FCHelp5
employed this technique.

•	 Internet Explorer toolbar and
search extensions, browser helper
objects, etc.

•	 Windows Explorer shell extensions
•	 Microsoft Office applets, plug-ins,

and controls

Injection by Windows
messaging filtering
The Windows Messaging System
allows the installation of message
filters to support a wide range of
functions. Computer-based training
is one example. To install a filter,
Windows provides an interface that
can place a given library in each pro-
cess address space.

•	 SetWindowsHookEx can be called
to hook one or more system
events. Hooks can be set for any
input method or for any Windows
message generated for a single
application. Applications running
on the same desktop as the call-
ing thread are frequent targets. All
hooked events are opportunities for
the rootkit to alter subsequent API
call results.

Injection by debugging subsystem
The debugging subsystem provided
by Windows allows one application to
debug and influence the execution
of another application. Assuming
enough privileges are available to
the user running the debugger, it
is possible to create new execution
threads in a target process, as well
as read and write from its memory
address space.

•	 CreateRemoteThread can run code
remotely into the address space of

any running process over which the
malicious process has access rights.
One typical technique is to call
CreateRemoteThread while
specifying the address of the
LoadLibrary function and the name
of the attacking DLL. This loads the
attacker’s library inside the victim’s
process address space. Once in that
space, the malware can monitor and
alter API calls. (This function is also
employed by many legitimate
applications to create a thread in
another running application so that
it shares its resources or queries
heap and process information.)
Adcliker-BA Trojan uses this
injection vector.

•	 WriteProcessMemory can write
code over any existing process
memory to which it has access.
SetThreadContext can then modify
the thread’s extended instruction
pointer to redirect the execution
of the thread into the newly
written code bytes. The
WriteProcessMemory injection
method works in much the same
way as CreateRemoteThread, except
that no new DLL loads, and the
malicious, inserted code can exist
only in memory, which makes
detection and cleanup more
difficult. HackerDefender is the
classic example of a Trojan
implementing this technique.

Injection by application vulnerability
Windows applications have many
methods for interprocess communi-
cations, in addition to other inputs
using network connections and local
files shared with other applications.
Usually, local applications are not
restricted to communicating solely
with other local applications, thus
allowing a wide range of possible
attack paths. If an application contains
buffer overflow vulnerability, or trusts
a local file that can be modified by
another application, malware can gain
control of the code executed inside a
vulnerable application.

Rootkits Part 2: A Technical Primer

�

www.mcafee.com

Payload techniques

Once a DLL is loaded into the target
address space, the user-mode rootkit
intercepts and modifies an API
function’s result to maintain the
illusion that it and any objects it is
hiding do not exist. This interception
occurs through one of two techniques:
import address table hooking, or
inline function hooking.

Import address table hooking
Figure 3 shows the top-level structure
of a portable executable file header.
The import data section, idata,
contains addresses of imported
functions. When a program is
compiled, not all of the API calls
within that program are linked to the
library modules in which they reside.
These API calls are redirected through
the import address table (IAT), using
standard assembly-language instruc-
tions. When the process loads binary
memory, it resolves the addresses
inside the IAT; thus the instructions
follow the new address. This archi-
tecture allows the binary code to be
ported to various operating systems
without recompiling.

Once within the target process’
address space, the rootkit DLL can
parse the portable executable file
format and find the location of the
target function within the IAT. Then
it’s easy to replace the target function
with a hook function from the rootkit
code. As a result, the rootkit code
executes whenever the target API is
called, and data passing to and from
the target function is altered. (These
techniques can be used to hook any
API, and are not limited to kernel32.
dll.)

Figure 4 shows rootkit code modifying
the IAT. This simple technique is
widespread, and has been found
in Adclicker-BA,3 AFXRootkit,6 and
Qoolaid Trojan.2

Inline function hooking
Inline function hooking (also known
as detour functions) differs from IAT
in that it redirects the call to the
hacker’s code by modifying it once the
actual code is in the core system DLLs.
The rootkit modifies only the first few
bytes of the function inside the core
system DLLs (kernel32.dll and ntdll.
dll), placing an instruction so that any

Headers

Code section .text

Data section .data

Import data section .idata

Export data section .edata

Figure 3: The portable executable

file format

Rootkit Code Modifying the IAT

Process (before hooking)

Code section …

Call dword ptr
[FindNextFilePtr]

Import data section

FindNextFilePtr:
0x12345678

Kernel32.dll

0x12345678:
FindNextFile code

Process (after hooking)

Code section …

Call dword ptr
[FindNextFilePtr]

Import data section

FindNextFilePtr:
0x12345678

Kernel32.dll

0x12345678:
FindNextFile code

Rootkit code

Call HookCode

0x70034622:
MyFindNextFile …

Jmp 0x12345678

0x70034622

Figure 4: IAT hooking routine

Rootkits Part 2: A Technical Primer

�

www.mcafee.com

process calls will hit the rootkit first.
As with IAT, the rootkit code checks
to see if the parameters indicate
the need to falsify results and then
responds appropriately.

Figure 5 illustrates the differ-
ences between the two techniques.
Resuming normal execution paths
after hooking requires that the initial
five bytes of the original FindNextFile
function (inside kernel32.dll) be
replaced at location 0x12345678,
before jumping back to kernel32.dll
code. (The initial bytes are saved in
the Trampoline Function.7)
User-mode rootkits that use this
technique include Adclicker-BA,3
AFXrootkit,6 Adware-Elitebar,8
and Backdoor-BAC.9

Kernel Mode:
the Next Step for Rootkits

Kernel-mode programming is com-
monly used by legitimate applications,
such as system device drivers and
anti-virus programs. System device
drivers use kernel-mode programs to
access low-level kernel objects and
functions, and to interface with the
underlying hardware. Anti-virus tools

use kernel-mode programs to monitor
for system-wide changes and to access
kernel-level permissions to defend
against malicious activity by any file.
For security products, kernel-mode
execution brings the added advantage
that the program cannot be deleted
by most user-mode processes.

A device driver running with kernel
privileges has full access to all system
data, and permission to terminate any
running service or process. Rootkit
technology’s next logical step is to
operate in kernel mode with system
privileges. By operating at the same
high privilege level as security tools,
rootkits will better avoid detection
and deletion.

Kernel-mode rootkits require that
their code be loaded into the kernel
address space, which rootkits typically
achieve by installing a kernel-mode
device driver. Once the delivery
mechanism is in place, kernel-mode
rootkits can implement various hooks
into API calls. This method is similar to
the tactics used by user-mode rootkits,
except that the hooks operate at a
higher privilege level.

Rootkit Code Modifying the Inline Function

Process (before hooking)

Code section …

Call FindNextFile

Import data section

FindNextFile: 0x12345678

Kernel32.dll

0x12345678:
FindNextFile code

Process (after hooking)

Code section …

Call FindNextFile

Import data section

FindNextFile: 0x12345678

Kernel32.dll

0x12345678:

Rootkit code

0x70034622:
MyFindNextFile

Replace first
5 bytes of
code
with
jmp
0x70034622

FindNextFile

Figure 5: Inline hooking routine

Rootkits Part 2: A Technical Primer

�

www.mcafee.com

Payload techniques:
already in the wild

Although there are many kinds of
kernel-mode rootkits, their complexity
and limited compatibility have made
them no more common than
user-mode attacks. Here are several
examples of current kernel-mode
payload techniques:

System service descriptor
table modification
As we briefly mentioned in the
Windows architecture section, Win32
subsystem libraries pass the calls they
receive from user-mode applications
to the system kernel via system service
dispatching. Now we’ll discuss this
process in more detail.

User-mode APIs, such as CreateFileW,
are implemented in kernel32.dll,
which calls the native API NtCreateFile
implemented in ntdll.dll. In turn, ntdll.
dll calls the processor instruction INT

2e / SYSENTER to transfer control to
kernel mode after setting the
target function index in a processor
register (EDX) (See Figure 6.). In
kernel mode, the system service
dispatch handler function, which
resides inside ntoskrnl.exe, uses the
function index in the EDX register to
locate the corresponding system ker-
nel function (NtCreateFile) inside the
System Service Descriptor Table (SSDT).

Inside the kernel, device drivers
call the Zwxxx functions inside
ntoskrnl.exe. Zwxxx functions set the
EDX register with the target function
index and then call the kernel-mode
system service dispatch handler, which
will look up the target function inside
the SSDT via the function index in the
EDX registers.

By modifying the contents of the SSDT
to point to a rootkit replacement
function, all API calls, regardless of
their origin (user-mode application

Passing Calls to Kernel Mode Gives Rootkits an Opening

User Mode
User Mode Program

Headers

Call CreateFileW…

Kernel32.dll
0x77E7B091:…

Call NtCreateFile…

Ntdll.dll

0x77F7595E:

mov edx, …

Int 2E / SYSENTER

Kernel Mode

NtCreateFile

System Service
Dispatcher

Index

Interrupt (2E)
Descriptor Table

System Service
Descriptor Table

Figure 6: Call flow displaying the role of

the System Service Dispatcher

Rootkits Part 2: A Technical Primer

�

www.mcafee.com

or kernel-mode device driver), can
be redirected to first call the rootkit
code. Approximately 50 percent of
the rootkits observed in the wild
implement this technique. (See
Appendix, on page 14, for a break-
down of techniques.)

Although relatively more sophisticated
than user-mode rootkit techniques,
the disadvantage of SSDT
modification is its susceptibility to
signature-based detection by most
memory scanners. A scanner can
search the memory for known
patterns to weed out the rootkit.

Each process running in memory has
an entry in a doubly linked list called
PsActiveProcessHead. Processes hidden
using SSDT modifications can easily be
uncovered by querying elements of
this list. The query results can be
compared to the list of running pro-
cess obtained via user-mode
applications such as Windows Task
Manager. Any difference can raise an
alarm, exposing the hidden process.

Direct kernel object modification
To overcome the limitations in
querying processes listed in an
PsActiveProcessHead list to discover
hidden processes, author fuzen_op
(author of FuRootkit10,11) came up
with a more sophisticated mechanism
called direct kernel object modifica-
tion, or DKOM. This approach raised
the bar of detection once again.

Non-file traces of a running rootkit
can be hidden by directly manipulat-
ing kernel objects that store lists of
running processes, threads, services,
ports, drivers, and handles. Linked
lists can be snipped and resewn with-
out affecting their functionality. The
rootkit can also modify kernel objects
by directly calling the Windows
Object Manager. By calling the Object
Manager to modify a token object,
for example, the rootkit can hide a
process from standard system

process enumeration services by
removing the process entry from the
PsActiveProcessHead list. The rootkit
author can use the same approach on
other system objects lists, such as the
PsLoadedModuleList.

Filter device drivers
A filter device driver attaches itself
on top of the I/O stack of an exist-
ing device driver. A device driver can
attach to the NT file system driver
or to the TCP/IP driver. With this
technique, malware authors can
intercept and modify all file system
or network requests (from a layered
service provider). Because security
products install themselves as filter
drivers as well to be effective, rootkit
filter drivers must attach themselves
to the I/O stack below the security
driver, so that they are called before
any security product filter drivers.

The first observance of filter drivers in
the wild occurred in September 2005,
with the discovery of the WinKRootkit
Trojan. The filter driver loads at boot
time, before any anti-virus scanner
starts, making the files it protects very
difficult to delete after the system
has booted. (WinKRootkit protects
Adware-CommonName12 files from
deletion.)

Because they are layers already added
in, adding a filter driver before the
anti-virus scanner’s layer may be the
next logical step for hiding from
traditional scanners. This technique
offers the scanner a subverted view
of the data.

Kernel-mode system
services handler modification
A hook to the user-mode-to-kernel-
mode transition mechanism allows
the rootkit to hook all function calls
that go via the SSDT. Thus, this
technique can either hook the
INT 2E handler, or for newer versions
of Windows, hook the SYSENTER
handler. When the SYSENTER

Rootkits Part 2: A Technical Primer

�

www.mcafee.com

instruction executes, the location of
the system service handler function
is stored in a model-specific register
named IA32_SYSENTER_EIP. A rootkit
can install a kernel-mode driver that
will read this value (using Intel instruc-
tion rdmsr) in ring 0 and overwrite
it (instruction wrmsr) with the hook
function, later calling the original
address. This allows the rootkit to
hook the Interrupt Descriptor Table
and intercept that register’s contents
while pointing the interrupt handler
to rootkit code, modifying the call’s
results.

Code for the SYSENTER hook is
available at www.rootkit.com/vault/
fuzen_op/SysEnterHook.zip. A recent
Trojan, Spam-Mailbot.c,13 demon-
strates this technique: It saves the file
in alternate data streams and hides
itself, making it very tough for
anti-virus scanners to detect.

Runtime detour patching
Unlike DKOM, runtime detour
patching modifies code instead of
data structures. By directly modify-
ing kernel memory so that it points

to rootkit code instead of to normal
code, the rootkit can hook arbitrary
kernel functions. Critical system
calls, such as privilege and authen-
tication checks, can be intercepted
and replaced with code that always
returns full access privileges.
These intercepts can even replace
loader functions, BIOS code, and firm-
ware code.

This technique is demonstrated by
the PWS-Gogo14 and Apropos15
Trojans. While the former hooks a
non-exported function in ntoskrnl.
exe called CMEnumerateKey, the
latter modifies various APIs such
as NtQuerySystemInformation and
NTQueryDirectoryFile to hide files
and processes. Moreover, Apropos
uses an interesting method of
redirecting the original code to its
device driver. (See Figure 7.) Instead
of creating a “jump” or a “call” at
the function’s entry point, it writes
code to create an exception. This
exception is handled by patching
Interrupt Descriptor Table (IDT) regis-
ter nt!KiTrap0C, which points to code
within the rootkit’s device driver.

NtQuerySystemInformation
(Original)

NtQuerySystemInformation
(Apropos Hook)

68 10 02 00 00

68 58 6E 41 00

E8 95 D9 F5 FF

push 210h

push offset_
dword_416E58

call sub_40BE73

68 10 02 00 00

50

8BC3

2BC3

48

8B38

push 210h

push eax

mov eax, ebx

sub eax, ebx

dec eax

 dword ptr ds:[eax]8B38 mov edi, dword
ptr ds:[eax]

Exception!

Figure 7: The Apropos Trojan gains

control by writing code that eventually
leads back to Apropos’ device driver.

Rootkits Part 2: A Technical Primer

10

www.mcafee.com

Input/output request packet
function table modification
Device drivers interpret input/output
request packets (IRPs) to execute
specific requests. For example, file
system drivers use IRPs for reading

and writing to files, and network
drivers use IRPs to send and receive
network packets. Each device driver
has a set of driver dispatch routines,
each of which handles a specific IRP.
Dispatch routines are stored inside the
DEVICE_OBJECT structure that
represents the device driver. The root-
kit device driver can directly hook
the driver dispatch routines inside
the file system, or in the network
device driver’s DRIVER_OBJECT struc-
tures and then gain control before
the device driver routines are called.
DRIVER_OBJECTS can be located
through DEVICE_OBJECT structures,
which can be located through the
IoGetDeviceObjectPointer API. Using
these techniques, the rootkit code
runs prior to the original driver call,
allowing the rootkit to inspect and
modify the results before returning
them. This technique is implemented
by PWS-Gogo, which hooks the
routines IRP_MJ_CREATE and IRP_MJ_
DIRECTORY_CONTROL
in ntfs.sys.

Payload techniques:
lab implementations

Although there is nothing to stop
the following techniques from
being distributed in wild, there is
no evidence that they are currently
being used in malware.

Hooking SystemCallStub
In user mode, system calls reside inside
ntdll.dll. Each system call is composed
of a standard subroutine that looks
like this:

The address SharedUserData!SystemCa
llStub is common in every ntxxx
function, and contains the address of
the KiFastSystemCall, which follows:

By modifying the address of
KiFastSystemCall, which is pointed to
by the SharedUserData!SystemCallS
tub, the rootkit can take control of
all the function calls made from user
mode to kernel mode.

Network driver interface
specification manipulation
Windows Network Driver Interface
Specification (NDIS) provides a
framework for network driver imple-
mentations. A rootkit can break the
interface between the network’s
physical device driver and the NDIS
device driver, hook NDIS pointers, or
patch the NDIS driver code to take
control before the firewall driver
can. The DeepDoor rootkit and the
Peligroso rootkit by Greg Hoglund
demonstrated methods to hook to
the Windows NDIS stack. Alexander
Tereshkin’s presentation at the
Black Hat USA 2006 conference
demonstrated various techniques
for hooking the Windows NDIS stack.

ntdll!NtCreateFile:

7c90d682 b825000000 mov eax, 25h

7c90d687 ba0003fe7f mov edx, offset SharedUserData!SystemCallStub

7c90d68c ff12 call dword ptr [edx]

7c90d68e c22c00 ret 2Ch

ntdll!KiFastSystemCall:

7c90eb8b 8bd4 mov edx, esp

7c90eb8d 0f34 sysenter

Rootkits Part 2: A Technical Primer

11

www.mcafee.com

Payload techniques:
proof of concept

All of the kernel-mode stealth
techniques we’ve described have an
inherent flaw. To function, they must
maintain their presence in memory,
which makes it impossible for them
to remain undetected by memory
scanners. The stealth development
community quickly came to realize
that in order to circumvent all
scanners, they had to wipe their
traces from memory.

The following techniques have been
demonstrated only as proofs of
concept and, to the best of our
knowledge, have yet to be seen in
the wild. They provide a glimpse
of the probable future of rootkits.

Virtual memory subversion
Virtual memory subversion exploits
the Windows memory subsystem,
making detection by scanners
challenging. Rootkit memory pages
are marked as non-present pages,
which result in a page fault each time
the page is accessed for a read. The
page fault handler (INT 0E) is hooked,
supplying false data to the caller if
the malware author believes the
calling process to be a defender.

When accessing a virtual memory
address, the processor relies on
virtual-to-physical memory address
translation tables called Page
Directory Entries (PDE) and Page
Table Entries (PTE). (See Figure 8.)
PTE contain flags that define the
status of the page, such as present or
not, user mode or kernel mode, etc.
The operating system supplies those
entries for the allocated memory
pages, and the processor reads those
tables to locate physical pages in
memory. Because this address
translation is “expensive” and occurs
every time the memory is accessed,
the processor maintains an internal
dedicated cache for the memory
translation. Those tables are called
Translation Look-aside Buffers
(TLB). (See Figure 9, next page.)
The processor maintains two sets of
TLB—one for data pages mapping
(DTLB) and one for instructions map-
ping (ITLB). The operating system does
not have direct read or write access to
DTLB but can invalidate them using
special instructions.

This technique16 generates a page
fault by marking the associated
rootkit code as not present inside the
PTE. When hooking the page fault
handler (Int 0E), the rootkit checks to
see if the calling instruction pointer

Linear Address
31 22 21 12 11 0

Directory Table Offset

Directory Entry

Page Table Entry

Physical Address10 10

20

12

Page Table

Control Register 3
(Page Directory
Base Register)

1024 PDE = 1024 PTE = 220 pages

*32 bits aligned onto a 4KB boundary

4KB page

32*

Figure 8: Mapping of linear
addresses to physical addresses by

Intel 32-bit processors

Rootkits Part 2: A Technical Primer

12

www.mcafee.com

and the fault address are the same.
If they are not, the caller is trying to
execute read only and not execute a
kernel-mode call. Thus, the rootkit can
modify the results before returning
them by changing the PTE temporarily
to map to a garbage page and then
accessing that page, which results
in the processor updating the cor-
responding DTLB entry. When control
returns to the processor to execute
the faulting memory read again, the
CPU will do the translation based on
the entry inside its updated DTLB.

SubVirt:
malware as virtual machines
Conceptually, virtual machine–based
rootkits (VMBRs)17 install a virtual
machine monitor beneath an existing
operating system and hoist the
original operating system into a
virtual machine. Virtual machine–
based rootkits are hard to detect and
remove because their state cannot be
accessed by software
running in the target system. Further,
VMBRs support general-purpose
malicious services by allowing such
services to run in a separate operating
system that is protected from the

target system. Because software
running on the target system can’t
assess the state of this type of rootkit,
the software fails to even detect it.

SubVirt is permanent and has to take
control during the boot phase—
before the operating system starts.
Therefore, it can be detected only by
booting the system in an offline
scanning mode. SubVirt is based on a
commercial virtual machine monitor,
which allows for easier detection.

Blue Pill:
processor-based virtualization
Both Intel and AMD have extended
their 64-bit processor instruction sets
to support hardware virtualization.
Blue Pill18 is a new conceptual root-
kit that uses the new virtualization
instructions provided by AMD’s Secure
Virtual Machine extension. Blue Pill
uses ultrathin hypervisor, and all the
hardware is natively accessible with-
out negatively affecting performance.
The key to Blue Pill is its ability to
install itself on the fly—without
modifying the BIOS, boot sector, or
system files.

Physical Memory

System Bus
(External)

Bus Interface Unit

L2 Cache L3 Cache†

Instruction Decoder Trace Cache

† Intel Xeon procssors only

Data Cache
Unit (L1)

Instruction
TLBs

Data TLBs

Store Buffer

Figure 9: Cache structure of Intel’s Pentium

4 and Xeon processors

Rootkits Part 2: A Technical Primer

13

www.mcafee.com

Raw network manipulation
This approach uses raw sockets to sniff
or forge network packets at a level
lower than most intrusion prevention
systems and firewall products operate,
thus masking the rootkit’s network
activities.

Firmware and
hardware manipulation
A rootkit can install itself into firm-
ware or hardware, such as a
network card, hard drive, or even
the BIOS. By targeting the BIOS, the
rootkit can survive reboots and power
cycles, leave no traces on disk, survive
the reinstallation of the operating
system, and effectively subvert it.
These rootkits are very complex to
implement and are not portable;
they change from device to device
and have to support different BIOS
versions as well.

Advanced Configuration and
Power Interface manipulation
A collection of functions for
power management, Advanced
Configuration and Power Interface
(ACPI) has its own high-level
interpreted language. ACPI can
be used to code a rootkit and store
key attack functions in the BIOS’
flash memory.19

The firmware on most modern
motherboards has tables associat-
ing commands in the ACPI Machine
Language to hardware commands.

New functionality can be programmed
in a higher-level ACPI Source
Language, be compiled into machine
language, and then be flashed into
the tables. The ability to flash the
memory depends on whether the
motherboard allows the BIOS to be
changed by default or if a jumper or
setting in the machine setup program
has to be changed.20

Conclusion

Although stealth techniques are
hardly new to malware, the recent
rapid increase in the prevalence and
sophistication of Windows rootkits
brings to light an alarming trend in
malware evolution. The legitimizing
effect of commercial software that
employs stealth technologies to cloak
its files and processes only reinforces
the reality that these technologies
are here to stay. Driven by financial
incentives, innovations in stealth
methods and rootkits are leading us
away from user-mode and toward
kernel-mode techniques. These new
techniques will challenge the security
community, creating hardier and ever
more virulent strains of malware that
may prove to be nearly undetectable
and undeletable. For now, the only
technical barrier blocking this
transition to kernel-mode hooking is
the poor cross-platform compatibility
of these low-level intercepts. In future
papers we will describe and analyze
strategies to combat rootkits.

Aditya Kapoor is a research scientist at
McAfee Avert Labs. He is experienced
in program analysis and disassembly
techniques, and amuses himself with
program comparison, rootkit analysis
and mitigation, and code behavior
analysis.

Ahmed Sallam is an architect with
McAfee Avert Labs and is the
Approval Board Chair/Manager of
McAfee’s internal R&D program.
Sallam overseas many advanced
research and development projects
in various software security areas,
including rootkits and stealth
computer attacks, spyware, software
behavioral analyses, operating system
security, and systems virtualization.

Rootkits Part 2: A Technical Primer

14

www.mcafee.com

Appendix

This table details the prevalence of various user- and kernel-mode techniques
found in rootkits today. Data from McAfee Avert Labs.

14

U
se

r-
M

o
d

e
Te

ch
n

iq
u

es

K
er

n
el

-M
o

d
e

Te
ch

n
iq

u
es

Malware name IA
T

In
lin

e

SS
D

T

D
K

O
M

SY
SE

N
TE

R

Fi
lt

er

M
em

o
ry

IR
P

ta
b

le
 m

o
d

ifi
ca

ti
o

n

M
al

w
ar

e
p

re
va

le
n

ce
 a

cc
o

rd
in

g
to

 v
ar

ia
n

t
co

u
n

t

N
u

m
b

er
 o

f
va

ri
an

ts

in
 w

ild
 s

in
ce

 2
00

3

NTillusion X N/A 0

BootRootkit X N/A 0

Shadow Walker X X N/A 0

Vanquish X Low 1

Rootkit-DigitalNames X Low 1

Sony, F4I rootkit X X Low 1

WinKRootkit X Low 1

PWS-Gogo X Low 2

Adware-PigSearch X X Low 5

CommonName X Low 7

ISearch X Low 8

Backdoor-ALI X Low 9

He4hook.sys X Low 9

FURootkit X Moderate 10

CoolWebSearch X Moderate 11

W32/Maddis.worm X Moderate 15

AFXRootkit X Moderate 40

PWS-Progent X X High 48

Spam-Mailbot.c X X High 48

Qoolaid X High 58

Vanti X X High 60

Elitebar, AdClicker-BA X X High 77

PWS-Goldun X High 223

HackerDefender X High 304

Backdoor-BAC X X High 394

W32/Feebs X High 556

Backdoor-CKB X High 707

Frequency
of technique

3 10 12 4 1 3 1 1 2595
Table 1

Rootkits Part 2: A Technical Primer

15

www.mcafee.com

1	 Greg Hoglund and Jamie Butler, “Rootkits: Subverting the Windows Kernel,”
Addison-Wesley Professional.

2	 Adware-Qoolaid, http://vil.nai.com/vil/content/v_126149.htm

3	 AdClicker-BA, http://vil.mcafeesecurity.com/vil/content/v_128301.htm

4	 Urbin, http://vil.nai.com/vil/content/v_125663.htm

5	 Adware-FCHelp, http://vil.nai.com/vil/content/v_137814.htm

6	 AFXrootkit, http://vil.nai.com/vil/content/v_102335.htm

7	 Galen Hunt and Doug Brubacher,
“Detours: Binary Interception of Win32 Functions,”
http://www.usenix.org/publications/library/proceedings/
usenix-nt99/full_papers/hunt/hunt.pdf

8	 Adware-EliteBar.dll, http://vil.nai.com/vil/content/v_133782.htm

9	 Backdoor-BAC.gen.dr, http://vil.nai.com/vil/content/v_138676.htm

10	FURootkit, http://vil.nai.com/vil/content/v_127131.htm

11	FU rootkit description, http://rootkit.com/project.php?id=12

12	Adware-CommonName, http://vil.nai.com/vil/content/v_100875.htm

13	Spam-Mailbot.c, http://vil.nai.com/vil/content/v_140181.htm

14	PWS-Gogo, http://vil.nai.com/vil/content/v_141447.htm

15	Apropos, http://vil.nai.com/vil/content/v_137345.htm

16	Sherri Sparks and Jamie Butler, “ ‘Shadow Walker,’
Raising the bar for rootkit detection,”
www.blackhat.com/presentations/bh-jp-05/bh-jp-05-sparks-butler.pdf

17	Samuel T. King, Peter M. Chen, Yi-Min Wang, Chad Verbowski, Helen J. Wang,
and Jacob R. Lorch, “SubVirt: Implementing malware with virtual machines,”
http://www.eecs.umich.edu/virtual/papers/king06.pdf

18	Joanna Rutkowska, “Subverting Vista Kernel for Fun and Profit,”
The Symposium on Security for Asia Network.

19	Robert Lemos, “Researchers: Rootkits headed for BIOS,”
http://www.securityfocus.com/news/11372

20	John Heasman, “Implementing and Detecting ACPI BIOS Rootkit,”
Black Hat Europe 2006 conference.

© 2007 McAfee, Inc. No part of this document may be reproduced without the expressed written

permission of McAfee, Inc. The information in this document is provided only for educational

purposes and for the convenience of McAfee’s customers. The information contained herein

is subject to change without  notice, and is provided “as is” without guarantee or warranty

as to the accuracy or applicability of the information to any specific situation or circumstance.

McAfee, Avert, and Avert Labs are trademarks or registered trademarks of McAfee, Inc. in the

United States and other countries. All other names and brands may be the property of others.

McAfee, Inc.
3965 Freedom Circle
Santa Clara, CA 95054,
888.847.8766
www.mcafee.com

