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In this white paper, we examine the 
technologies that make stealth  
possible on the Microsoft® Windows 
platform. After a brief explanation  
of the basic security architecture of 
Windows, we explore the many  
methods that have been discovered 
for hiding files, processes, and registry 
keys. We begin with user-mode  
rootkits, which operate at the same 
privilege level as the user who 
installed it. Most of the common 
stealth technologies to date fall into 
this category.  Rootkits that operate  
at the higher, system privilege level, 
on the other hand, are not nearly as 
common, but they are quite difficult 
to remove because their processes 
have system privileges. At the end 
of this paper, we describe this latest 
trend in stealth technologies.

Windows Architecture

The i386 architecture supports four 
rings (numbered 0 to 3), or privilege 
levels, to protect system code and 
data from being unintentionally or 
maliciously overwritten by lower  
privileged code. Ring 0 is the highest 
privilege level, while ring 3 is the  
lowest. Windows uses two privilege 
levels (rings 0 and 3) for process and 
data security. Using only two privilege 
levels enables Windows to run on  
CPU architectures that do not support 
all four. 

Code for applications such as Internet 
Explorer and Microsoft Word execute 
within ring 3. A number of Windows 
services run at this level. These include 
Service Control Manager, Local System 
Security Authority, Winlogon, Session 
Manager, and RPC Server. Kernel-level 
code runs within ring 0 and is used 
in device drivers and Windows kernel 
system components such as managers 
for virtual memory, cache, I/O, object, 
plug and play, as well as the hardware 
abstraction layer, graphics subsystem, 
file systems, and network protocol 
implementations. Other examples of 
legitimate code running with system 
privileges are device drivers that  
control sound, keyboard, printer, 
other peripherals, and various system 
monitoring and anti-virus tools.

Figure 1 (next page) shows a high-
level view of a simple user-mode 
application’s execution path. User 
applications constantly require  
underlying operating-system kernel 
and hardware resources, with these 
interactions managed by the operat-
ing system. To communicate with the 
kernel, user-mode applications use 
Win32 API calls, which are exported 
by the set of dynamic link libraries 
(DLLs) that comprise the Win32  
subsystem; among them are  
advapi32.dll, user32.dll, gdi32.dll,  
kernel32.dll, shell32.dll, comctl32.dll, 
and comdlg32.dll. 

Rootkits Part 2: A Technical Primer
In “Rootkits Part 1: The Growing Threat,” we highlighted an important emerging trend in 

information security: the increasing pervasiveness of stealth technologies—called rootkits—in 
malware. Rootkits shield the files, processes, and registry keys of malware so that they can 
carry on their malicious activities without a user’s knowledge. And when a user does discover  
a rootkit infection, removing it is often too difficult for the typical user. 
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When a function call is made to the 
Win32 subsystem, it may, in turn,  
carry out one of the following  
four activities:

•	 Deal with the request locally, inside 
the user-mode space and not call 
into the kernel.

•	 Call into a user-mode service such  
as csrss.exe, which is responsible  
for keeping the Win32 subsystem 
running. This process maintains  
the Win32 processes state-related 
information and returns informa-
tion to the calling APIs.

•	 Issue a remote procedure call to  
one of the running Windows  
services that acts as the server  
for that specific RPC interface.

•	 Make an API call that requires the 
services of the kernel. This category 
of API call actually calls into the cor-
responding function in the ntdll.dll.

Ntdll is a special-purpose DLL that 
contains internal support functions 
and system-service dispatch stubs to 
executive functions. Ntdll.dll maps the 
incoming API requests to their cor-
responding kernel services through a 
mechanism called system service  
dispatching. The control from user 
mode to kernel mode is transferred 

via a special processor facility that 
could be either an interrupt (INT 02E 
for Windows 2000 and older Windows 
NT systems) or the SysEnter/SysExit 
instructions (for Windows XP and 
Windows Vista).1

The kernel32.dll is commonly mistaken 
as the Windows kernel. Kernel32.dll is 
actually a user-mode DLL that simply 
passes on requests for the kernel to 
ntdll.dll, another DLL that operates  
in user mode. Windows kernel  
functions actually reside in ntoskrnl.
exe. The file win32k.sys is another 
kernel-mode component that exists 
within the Win32 subsystem. Other 
subsystems, such as OS/2 and POSIX, 
are included only to provide backward 
compatibility.

A rootkit must alter the flow of this 
normal execution path to make its 
stealth implementation successful. This 
modification can occur via a process 
called system hooking. The Windows 
architecture itself supports many  
easily implemented hooking methods 
to keep itself flexible and extendible. 
Rootkits normally modify the data 
returned by Windows system function 
calls to hide their binary files,  
processes, and registry entries.

A Simple User-Mode Application’s Execution Path
 User Mode

User Application/Services

Other Subsystems, 
OS/2, POSIX Advapi32.dll Kernel32.dll User32/GDI23 Login/GINA

Ntdll.dll Runtime Library

 Kernel Mode

Ntoskrnl.exe
Executive

Underlying Kernel

Hardware Abstraction Layer

HardwareFigure 1. Windows user- and kernel-mode 
interaction for Win32 systems
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Depending on where they run and 
what area in the system they hook, 
rootkits’ stealth technology comes  
in two flavors: user mode and kernel 
mode. User-mode rootkits are  
relatively easy to detect and repair 
because they execute with user-mode 
privileges. Kernel-mode rootkits, on 
the other hand, execute with system 
privileges, making them more  
challenging to detect and repair. 

User-Mode Rootkits

Simple user-mode rootkits (for  
example, Qoolaid2) can hide from 
process viewers, such as the Windows 
Task Manager, by hooking the specific 
viewer process. However, its effective-
ness depends on its ability to hide 
from virus scanners and other security 
tools. The stealthier Adclicker-BA3 
Trojan hooks all running processes for 
this purpose. This tactic, however, may 
not always work. 

Installation vectors
To alter the execution path of  
commonly used APIs, user-mode 
rootkits may execute within another 
process by loading a DLL into the 
memory space of the target. However, 
the rootkit need not run inside the 
memory of the hooked process. An 

alternative method of hooking is for 
the malware author to write arbitrary 
code using the WriteProcessMemory 
function of the Windows API. Figure 2 
shows the most commonly used  
code-injection attack vectors.

The following section briefly describes 
the variety of vectors through which 
attacking code can inject itself. All of 
these techniques rely on documented 
Windows APIs that are commonly 
used by utilities, development tools, 
debuggers, security tools, and others. 
Therefore, merely detecting the use  
of these techniques is not sufficient 
evidence of rootkit activity.

Injection by application extensions
The Windows operating system, 
Windows Explorer, and Internet 
Explorer are designed to be program-
matically extensible. Here are some 
examples: 

•	 Windows NT, 2000, and XP support  
the use of the registry key 
HKEY_LOCAL_MACHINE\Software\
Microsoft\WindowsNT\Current 
Version\Windows\AppInit_DLLs. If 
the value of AppInit_DLLs points  
to a rootkit DLL, then during the 
process load time AppInit_DLLs 
causes every process that loads 

Common Methods for Malware Attacks
Process

User Code

Kernel32.dll

Rootkit code

1. AppInit_DLLs

2. SetWindowsHookEx

3. CreateRemoteThread

4. WriteProcessMemory

Attacking Malware

 
Figure 2: Code-injection attack vectors
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user32.dll to also load the rootkit 
DLL listed under this same reg-
istry. That rootkit DLL will then 
have access to the process address 
space and can apply different 
methods of hooking to the process 
code and data sections. Malware 
attacks Urbin4 and Adware-FCHelp5 
employed this technique.

•	 Internet Explorer toolbar and  
search extensions, browser helper 
objects, etc.

•	 Windows Explorer shell extensions
•	 Microsoft Office applets, plug-ins, 

and controls

Injection by Windows  
messaging filtering
The Windows Messaging System 
allows the installation of message  
filters to support a wide range of 
functions. Computer-based training  
is one example. To install a filter, 
Windows provides an interface that 
can place a given library in each pro-
cess address space.

•	 SetWindowsHookEx can be called  
to hook one or more system  
events. Hooks can be set for any 
input method or for any Windows 
message generated for a single 
application. Applications running  
on the same desktop as the call-
ing thread are frequent targets. All 
hooked events are opportunities for 
the rootkit to alter subsequent API 
call results. 

Injection by debugging subsystem
The debugging subsystem provided 
by Windows allows one application to 
debug and influence the execution  
of another application. Assuming 
enough privileges are available to  
the user running the debugger, it  
is possible to create new execution 
threads in a target process, as well  
as read and write from its memory 
address space. 

•	 CreateRemoteThread can run code 
remotely into the address space of 

any running process over which the 
malicious process has access rights. 
One typical technique is to call 
CreateRemoteThread while  
specifying the address of the 
LoadLibrary function and the name 
of the attacking DLL. This loads the 
attacker’s library inside the victim’s 
process address space. Once in that 
space, the malware can monitor and 
alter API calls. (This function is also 
employed by many legitimate  
applications to create a thread in 
another running application so that 
it shares its resources or queries 
heap and process information.) 
Adcliker-BA Trojan uses this  
injection vector.

•	 WriteProcessMemory can write  
code over any existing process  
memory to which it has access. 
SetThreadContext can then modify 
the thread’s extended instruction 
pointer to redirect the execution  
of the thread into the newly  
written code bytes. The 
WriteProcessMemory injection 
method works in much the same 
way as CreateRemoteThread, except 
that no new DLL loads, and the 
malicious, inserted code can exist 
only in memory, which makes  
detection and cleanup more  
difficult. HackerDefender is the  
classic example of a Trojan  
implementing this technique. 

Injection by application vulnerability
Windows applications have many 
methods for interprocess communi-
cations, in addition to other inputs 
using network connections and local 
files shared with other applications. 
Usually, local applications are not 
restricted to communicating solely 
with other local applications, thus 
allowing a wide range of possible 
attack paths. If an application contains 
buffer overflow vulnerability, or trusts 
a local file that can be modified by 
another application, malware can gain 
control of the code executed inside a 
vulnerable application.
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Payload techniques

Once a DLL is loaded into the target 
address space, the user-mode rootkit 
intercepts and modifies an API  
function’s result to maintain the  
illusion that it and any objects it is 
hiding do not exist. This interception 
occurs through one of two techniques: 
import address table hooking, or 
inline function hooking.

Import address table hooking
Figure 3 shows the top-level structure 
of a portable executable file header. 
The import data section, idata,  
contains addresses of imported  
functions. When a program is  
compiled, not all of the API calls  
within that program are linked to the 
library modules in which they reside. 
These API calls are redirected through 
the import address table (IAT), using 
standard assembly-language instruc-
tions. When the process loads binary 
memory, it resolves the addresses 
inside the IAT; thus the instructions 
follow the new address. This archi-
tecture allows the binary code to be 
ported to various operating systems 
without recompiling.

Once within the target process’ 
address space, the rootkit DLL can 
parse the portable executable file  
format and find the location of the 
target function within the IAT. Then 
it’s easy to replace the target function 
with a hook function from the rootkit 
code. As a result, the rootkit code  
executes whenever the target API is 
called, and data passing to and from 
the target function is altered. (These 
techniques can be used to hook any 
API, and are not limited to kernel32.
dll.)

Figure 4 shows rootkit code modifying 
the IAT. This simple technique is  
widespread, and has been found 
in Adclicker-BA,3 AFXRootkit,6 and 
Qoolaid Trojan.2 

Inline function hooking
Inline function hooking (also known 
as detour functions) differs from IAT 
in that it redirects the call to the  
hacker’s code by modifying it once the 
actual code is in the core system DLLs. 
The rootkit modifies only the first few 
bytes of the function inside the core  
system DLLs (kernel32.dll and ntdll.
dll), placing an instruction so that any 

Headers

Code section .text

Data section .data

Import data section .idata

Export data section .edata

 
Figure 3: The portable executable  

file format

Rootkit Code Modifying the IAT

Process (before hooking)

Code section …

Call dword ptr 
[FindNextFilePtr]

Import data section 

FindNextFilePtr:
0x12345678

Kernel32.dll

0x12345678:
FindNextFile code

Process (after hooking) 

Code section …

Call dword ptr 
[FindNextFilePtr]

Import data section 

FindNextFilePtr:
0x12345678

Kernel32.dll

0x12345678:
FindNextFile code

Rootkit code

Call HookCode

0x70034622:
MyFindNextFile …

Jmp 0x12345678

0x70034622

 
Figure 4: IAT hooking routine
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process calls will hit the rootkit first. 
As with IAT, the rootkit code checks 
to see if the parameters indicate 
the need to falsify results and then 
responds appropriately.

Figure 5 illustrates the differ-
ences between the two techniques. 
Resuming normal execution paths 
after hooking requires that the initial 
five bytes of the original FindNextFile 
function (inside kernel32.dll) be 
replaced at location 0x12345678, 
before jumping back to kernel32.dll 
code. (The initial bytes are saved in 
the Trampoline Function.7)  
User-mode rootkits that use this  
technique include Adclicker-BA,3 
AFXrootkit,6 Adware-Elitebar,8  
and Backdoor-BAC.9 

Kernel Mode:  
the Next Step for Rootkits

Kernel-mode programming is com-
monly used by legitimate applications, 
such as system device drivers and 
anti-virus programs. System device 
drivers use kernel-mode programs to 
access low-level kernel objects and 
functions, and to interface with the 
underlying hardware. Anti-virus tools 

use kernel-mode programs to monitor 
for system-wide changes and to access 
kernel-level permissions to defend 
against malicious activity by any file. 
For security products, kernel-mode 
execution brings the added advantage 
that the program cannot be deleted 
by most user-mode processes.

A device driver running with kernel 
privileges has full access to all system 
data, and permission to terminate any 
running service or process. Rootkit 
technology’s next logical step is to 
operate in kernel mode with system 
privileges. By operating at the same 
high privilege level as security tools, 
rootkits will better avoid detection 
and deletion.

Kernel-mode rootkits require that 
their code be loaded into the kernel 
address space, which rootkits typically 
achieve by installing a kernel-mode 
device driver. Once the delivery  
mechanism is in place, kernel-mode 
rootkits can implement various hooks 
into API calls. This method is similar to 
the tactics used by user-mode rootkits, 
except that the hooks operate at a 
higher privilege level.

Rootkit Code Modifying the Inline Function

Process (before hooking)

Code section …

Call FindNextFile

Import data section 

FindNextFile: 0x12345678

Kernel32.dll

0x12345678:
FindNextFile code

Process (after hooking)

Code section …

Call FindNextFile

Import data section 

FindNextFile: 0x12345678

Kernel32.dll

0x12345678:

Rootkit code

0x70034622:
MyFindNextFile

Replace first
5 bytes of
code
with
jmp
0x70034622

FindNextFile

 
Figure 5: Inline hooking routine
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Payload techniques:  
already in the wild

Although there are many kinds of  
kernel-mode rootkits, their complexity 
and limited compatibility have made 
them no more common than  
user-mode attacks. Here are several 
examples of current kernel-mode  
payload techniques:

System service descriptor  
table modification
As we briefly mentioned in the 
Windows architecture section, Win32 
subsystem libraries pass the calls they 
receive from user-mode applications 
to the system kernel via system service 
dispatching. Now we’ll discuss this 
process in more detail.

User-mode APIs, such as CreateFileW, 
are implemented in kernel32.dll, 
which calls the native API NtCreateFile 
implemented in ntdll.dll. In turn, ntdll.
dll calls the processor instruction INT 

2e / SYSENTER to transfer control to 
kernel mode after setting the  
target function index in a processor 
register (EDX) (See Figure 6.). In  
kernel mode, the system service  
dispatch handler function, which 
resides inside ntoskrnl.exe, uses the 
function index in the EDX register to 
locate the corresponding system ker-
nel function (NtCreateFile) inside the 
System Service Descriptor Table (SSDT).

Inside the kernel, device drivers  
call the Zwxxx functions inside 
ntoskrnl.exe. Zwxxx functions set the 
EDX register with the target function 
index and then call the kernel-mode 
system service dispatch handler, which 
will look up the target function inside 
the SSDT via the function index in the 
EDX registers.

By modifying the contents of the SSDT 
to point to a rootkit replacement 
function, all API calls, regardless of 
their origin (user-mode application 

Passing Calls to Kernel Mode Gives Rootkits an Opening

User Mode 
User Mode Program

Headers

Call CreateFileW…

Kernel32.dll
0x77E7B091:…

Call NtCreateFile…

Ntdll.dll

0x77F7595E:

mov edx, …

Int 2E / SYSENTER 

Kernel Mode

NtCreateFile

System Service 
Dispatcher

Index

Interrupt (2E) 
Descriptor Table

System Service 
Descriptor Table

 
Figure 6: Call flow displaying the role of 

the System Service Dispatcher
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or kernel-mode device driver), can 
be redirected to first call the rootkit 
code. Approximately 50 percent of  
the rootkits observed in the wild 
implement this technique. (See 
Appendix, on page 14, for a break-
down of techniques.)

Although relatively more sophisticated 
than user-mode rootkit techniques, 
the disadvantage of SSDT  
modification is its susceptibility to  
signature-based detection by most 
memory scanners. A scanner can 
search the memory for known  
patterns to weed out the rootkit.

Each process running in memory has 
an entry in a doubly linked list called 
PsActiveProcessHead. Processes hidden 
using SSDT modifications can easily be 
uncovered by querying elements of 
this list. The query results can be  
compared to the list of running pro-
cess obtained via user-mode  
applications such as Windows Task 
Manager. Any difference can raise an 
alarm, exposing the hidden process. 

Direct kernel object modification
To overcome the limitations in  
querying processes listed in an 
PsActiveProcessHead list to discover 
hidden processes, author fuzen_op 
(author of FuRootkit10,11) came up 
with a more sophisticated mechanism 
called direct kernel object modifica-
tion, or DKOM. This approach raised 
the bar of detection once again. 

Non-file traces of a running rootkit 
can be hidden by directly manipulat-
ing kernel objects that store lists of 
running processes, threads, services, 
ports, drivers, and handles. Linked 
lists can be snipped and resewn with-
out affecting their functionality. The 
rootkit can also modify kernel objects 
by directly calling the Windows 
Object Manager. By calling the Object 
Manager to modify a token object,  
for example, the rootkit can hide a 
process from standard system  

process enumeration services by 
removing the process entry from the 
PsActiveProcessHead list. The rootkit 
author can use the same approach on 
other system objects lists, such as the 
PsLoadedModuleList.

Filter device drivers
A filter device driver attaches itself  
on top of the I/O stack of an exist-
ing device driver. A device driver can 
attach to the NT file system driver  
or to the TCP/IP driver. With this  
technique, malware authors can  
intercept and modify all file system  
or network requests (from a layered 
service provider). Because security 
products install themselves as filter 
drivers as well to be effective, rootkit 
filter drivers must attach themselves 
to the I/O stack below the security 
driver, so that they are called before 
any security product filter drivers. 

The first observance of filter drivers in 
the wild occurred in September 2005, 
with the discovery of the WinKRootkit 
Trojan. The filter driver loads at boot 
time, before any anti-virus scanner 
starts, making the files it protects very 
difficult to delete after the system 
has booted. (WinKRootkit protects 
Adware-CommonName12 files from 
deletion.)

Because they are layers already added 
in, adding a filter driver before the 
anti-virus scanner’s layer may be the 
next logical step for hiding from  
traditional scanners. This technique 
offers the scanner a subverted view  
of the data. 

Kernel-mode system  
services handler modification
A hook to the user-mode-to-kernel-
mode transition mechanism allows  
the rootkit to hook all function calls 
that go via the SSDT. Thus, this  
technique can either hook the  
INT 2E handler, or for newer versions 
of Windows, hook the SYSENTER  
handler. When the SYSENTER  
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instruction executes, the location of 
the system service handler function 
is stored in a model-specific register 
named IA32_SYSENTER_EIP. A rootkit 
can install a kernel-mode driver that 
will read this value (using Intel instruc-
tion rdmsr) in ring 0 and overwrite 
it (instruction wrmsr) with the hook 
function, later calling the original 
address. This allows the rootkit to 
hook the Interrupt Descriptor Table 
and intercept that register’s contents 
while pointing the interrupt handler 
to rootkit code, modifying the call’s 
results.

Code for the SYSENTER hook is  
available at www.rootkit.com/vault/ 
fuzen_op/SysEnterHook.zip. A recent 
Trojan, Spam-Mailbot.c,13 demon-
strates this technique: It saves the file 
in alternate data streams and hides 
itself, making it very tough for  
anti-virus scanners to detect. 

Runtime detour patching
Unlike DKOM, runtime detour  
patching modifies code instead of 
data structures. By directly modify-
ing kernel memory so that it points 

to rootkit code instead of to normal 
code, the rootkit can hook arbitrary 
kernel functions. Critical system 
calls, such as privilege and authen-
tication checks, can be intercepted 
and replaced with code that always 
returns full access privileges.  
These intercepts can even replace 
loader functions, BIOS code, and firm-
ware code. 

This technique is demonstrated by  
the PWS-Gogo14 and Apropos15 
Trojans. While the former hooks a 
non-exported function in ntoskrnl.
exe called CMEnumerateKey, the 
latter modifies various APIs such 
as NtQuerySystemInformation and 
NTQueryDirectoryFile to hide files  
and processes. Moreover, Apropos 
uses an interesting method of  
redirecting the original code to its 
device driver. (See Figure 7.) Instead  
of creating a “jump” or a “call” at 
the function’s entry point, it writes 
code to create an exception. This 
exception is handled by patching 
Interrupt Descriptor Table (IDT) regis-
ter nt!KiTrap0C, which points to code 
within the rootkit’s device driver. 

NtQuerySystemInformation
(Original)

NtQuerySystemInformation
(Apropos Hook)

68 10 02 00 00

68 58 6E 41 00

E8 95 D9 F5 FF

push    210h

push offset_
dword_416E58

call    sub_40BE73

68 10 02 00 00

50

8BC3

2BC3

48

8B38

push    210h

push eax

mov eax, ebx

sub eax, ebx

dec eax

  dword ptr ds:[eax]8B38 mov edi, dword 
ptr ds:[eax]

Exception!

 
Figure 7: The Apropos Trojan gains  

control by writing code that eventually 
leads back to Apropos’ device driver.
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Input/output request packet  
function table modification
Device drivers interpret input/output 
request packets (IRPs) to execute  
specific requests. For example, file  
system drivers use IRPs for reading 

and writing to files, and network  
drivers use IRPs to send and receive 
network packets. Each device driver 
has a set of driver dispatch routines, 
each of which handles a specific IRP. 
Dispatch routines are stored inside the 
DEVICE_OBJECT structure that  
represents the device driver. The root-
kit device driver can directly hook 
the driver dispatch routines inside 
the file system, or in the network 
device driver’s DRIVER_OBJECT struc-
tures and then gain control before 
the device driver routines are called. 
DRIVER_OBJECTS can be located 
through DEVICE_OBJECT structures, 
which can be located through the 
IoGetDeviceObjectPointer API. Using 
these techniques, the rootkit code 
runs prior to the original driver call, 
allowing the rootkit to inspect and 
modify the results before returning 
them. This technique is implemented 
by PWS-Gogo, which hooks the  
routines IRP_MJ_CREATE and IRP_MJ_
DIRECTORY_CONTROL  
in ntfs.sys.

Payload techniques:  
lab implementations

Although there is nothing to stop  
the following techniques from  
being distributed in wild, there is  
no evidence that they are currently 
being used in malware. 

Hooking SystemCallStub
In user mode, system calls reside inside 
ntdll.dll. Each system call is composed 
of a standard subroutine that looks 
like this:

The address SharedUserData!SystemCa
llStub is common in every ntxxx  
function, and contains the address of 
the KiFastSystemCall, which follows:

By modifying the address of 
KiFastSystemCall, which is pointed to 
by the SharedUserData!SystemCallS
tub, the rootkit can take control of 
all the function calls made from user 
mode to kernel mode.

Network driver interface  
specification manipulation
Windows Network Driver Interface 
Specification (NDIS) provides a  
framework for network driver imple-
mentations. A rootkit can break the 
interface between the network’s  
physical device driver and the NDIS 
device driver, hook NDIS pointers, or 
patch the NDIS driver code to take 
control before the firewall driver 
can. The DeepDoor rootkit and the 
Peligroso rootkit by Greg Hoglund 
demonstrated methods to hook to  
the Windows NDIS stack. Alexander 
Tereshkin’s presentation at the  
Black Hat USA 2006 conference  
demonstrated various techniques  
for hooking the Windows NDIS stack.

ntdll!NtCreateFile:

7c90d682 b825000000 mov eax, 25h

7c90d687 ba0003fe7f mov edx, offset SharedUserData!SystemCallStub 

7c90d68c ff12 call dword ptr [edx]

7c90d68e c22c00 ret 2Ch

ntdll!KiFastSystemCall:

7c90eb8b 8bd4 mov edx, esp

7c90eb8d 0f34 sysenter
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Payload techniques:  
proof of concept

All of the kernel-mode stealth  
techniques we’ve described have an 
inherent flaw. To function, they must 
maintain their presence in memory, 
which makes it impossible for them  
to remain undetected by memory 
scanners. The stealth development 
community quickly came to realize 
that in order to circumvent all  
scanners, they had to wipe their  
traces from memory. 

The following techniques have been 
demonstrated only as proofs of  
concept and, to the best of our  
knowledge, have yet to be seen in  
the wild. They provide a glimpse  
of the probable future of rootkits. 

Virtual memory subversion
Virtual memory subversion exploits 
the Windows memory subsystem, 
making detection by scanners  
challenging. Rootkit memory pages 
are marked as non-present pages, 
which result in a page fault each time 
the page is accessed for a read. The 
page fault handler (INT 0E) is hooked, 
supplying false data to the caller if  
the malware author believes the  
calling process to be a defender.

When accessing a virtual memory 
address, the processor relies on  
virtual-to-physical memory address 
translation tables called Page 
Directory Entries (PDE) and Page  
Table Entries (PTE). (See Figure 8.)  
PTE contain flags that define the  
status of the page, such as present or 
not, user mode or kernel mode, etc. 
The operating system supplies those 
entries for the allocated memory 
pages, and the processor reads those 
tables to locate physical pages in 
memory. Because this address  
translation is “expensive” and occurs 
every time the memory is accessed, 
the processor maintains an internal  
dedicated cache for the memory  
translation. Those tables are called 
Translation Look-aside Buffers  
(TLB). (See Figure 9, next page.) 
The processor maintains two sets of 
TLB—one for data pages mapping 
(DTLB) and one for instructions map-
ping (ITLB). The operating system does 
not have direct read or write access to 
DTLB but can invalidate them using  
special instructions.

This technique16 generates a page 
fault by marking the associated  
rootkit code as not present inside the 
PTE. When hooking the page fault 
handler (Int 0E), the rootkit checks to 
see if the calling instruction pointer 
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Figure 8: Mapping of linear  
addresses to physical addresses by  

Intel 32-bit processors
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and the fault address are the same.  
If they are not, the caller is trying to 
execute read only and not execute a 
kernel-mode call. Thus, the rootkit can 
modify the results before returning 
them by changing the PTE temporarily 
to map to a garbage page and then 
accessing that page, which results 
in the processor updating the cor-
responding DTLB entry. When control 
returns to the processor to execute 
the faulting memory read again, the 
CPU will do the translation based on 
the entry inside its updated DTLB. 

SubVirt:  
malware as virtual machines
Conceptually, virtual machine–based 
rootkits (VMBRs)17 install a virtual 
machine monitor beneath an existing 
operating system and hoist the  
original operating system into a  
virtual machine. Virtual machine–
based rootkits are hard to detect and 
remove because their state cannot be 
accessed by software  
running in the target system. Further, 
VMBRs support general-purpose  
malicious services by allowing such 
services to run in a separate operating 
system that is protected from the  

target system. Because software  
running on the target system can’t 
assess the state of this type of rootkit, 
the software fails to even detect it.

SubVirt is permanent and has to take 
control during the boot phase—
before the operating system starts. 
Therefore, it can be detected only by 
booting the system in an offline  
scanning mode. SubVirt is based on a 
commercial virtual machine monitor, 
which allows for easier detection.

Blue Pill:  
processor-based virtualization
Both Intel and AMD have extended 
their 64-bit processor instruction sets 
to support hardware virtualization. 
Blue Pill18 is a new conceptual root-
kit that uses the new virtualization 
instructions provided by AMD’s Secure 
Virtual Machine extension. Blue Pill 
uses ultrathin hypervisor, and all the 
hardware is natively accessible with-
out negatively affecting performance. 
The key to Blue Pill is its ability to 
install itself on the fly—without  
modifying the BIOS, boot sector, or 
system files.

Physical Memory

System Bus
(External)

Bus Interface Unit

L2 Cache L3 Cache†

Instruction Decoder Trace Cache

† Intel Xeon procssors only

Data Cache 
Unit (L1)

Instruction
TLBs

Data TLBs

Store Buffer

 
Figure 9: Cache structure of Intel’s Pentium 

4 and Xeon processors
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Raw network manipulation
This approach uses raw sockets to sniff 
or forge network packets at a level 
lower than most intrusion prevention 
systems and firewall products operate, 
thus masking the rootkit’s network 
activities. 

Firmware and  
hardware manipulation
A rootkit can install itself into firm-
ware or hardware, such as a  
network card, hard drive, or even  
the BIOS. By targeting the BIOS, the 
rootkit can survive reboots and power 
cycles, leave no traces on disk, survive 
the reinstallation of the operating  
system, and effectively subvert it. 
These rootkits are very complex to 
implement and are not portable;  
they change from device to device 
and have to support different BIOS 
versions as well.

Advanced Configuration and  
Power Interface manipulation
A collection of functions for  
power management, Advanced 
Configuration and Power Interface 
(ACPI) has its own high-level  
interpreted language. ACPI can  
be used to code a rootkit and store 
key attack functions in the BIOS’  
flash memory.19

The firmware on most modern  
motherboards has tables associat-
ing commands in the ACPI Machine 
Language to hardware commands. 

New functionality can be programmed 
in a higher-level ACPI Source 
Language, be compiled into machine  
language, and then be flashed into 
the tables. The ability to flash the 
memory depends on whether the 
motherboard allows the BIOS to be 
changed by default or if a jumper or 
setting in the machine setup program 
has to be changed.20

Conclusion

Although stealth techniques are  
hardly new to malware, the recent 
rapid increase in the prevalence and 
sophistication of Windows rootkits 
brings to light an alarming trend in 
malware evolution. The legitimizing 
effect of commercial software that 
employs stealth technologies to cloak 
its files and processes only reinforces 
the reality that these technologies  
are here to stay. Driven by financial 
incentives, innovations in stealth 
methods and rootkits are leading us 
away from user-mode and toward  
kernel-mode techniques. These new 
techniques will challenge the security 
community, creating hardier and ever 
more virulent strains of malware that 
may prove to be nearly undetectable 
and undeletable. For now, the only 
technical barrier blocking this  
transition to kernel-mode hooking is 
the poor cross-platform compatibility 
of these low-level intercepts. In future 
papers we will describe and analyze 
strategies to combat rootkits. 
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Appendix

This table details the prevalence of various user- and kernel-mode techniques 
found in rootkits today. Data from McAfee Avert Labs.
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NTillusion X      N/A  0

BootRootkit    X    N/A  0

Shadow Walker    X  X N/A 0

Vanquish X      Low 1

Rootkit-DigitalNames   X     Low 1

Sony, F4I rootkit   X  X  Low 1

WinKRootkit X Low 1

PWS-Gogo X Low 2

Adware-PigSearch X X Low 5

CommonName X     Low 7

ISearch   X     Low  8

Backdoor-ALI   X     Low  9

He4hook.sys   X     Low  9

FURootkit    X    Moderate      10

CoolWebSearch X      Moderate      11

W32/Maddis.worm X       Moderate      15

AFXRootkit X      Moderate      40

PWS-Progent X X     High      48

Spam-Mailbot.c X X High      48

Qoolaid X       High      58

Vanti X X High      60

Elitebar, AdClicker-BA X X      High      77

PWS-Goldun X High    223

HackerDefender X      High    304

Backdoor-BAC X X High    394

W32/Feebs X High    556

Backdoor-CKB X High    707

Frequency
of technique

3 10 12 4 1 3 1 1  2595 
Table 1
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